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Statistical accuracy in estimating parameters of the spatial 
coherence function by photon counting techniques 
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Electrical Engineering Department, University of Santa Catarina, Florianopolis. Brazil 

Received 3 January 1973 

Abstract. We investigate the statistical errors which arise in estimating parameters of the 
spatial coherence of gaussian optical fields by using two photon counters and a digital 
correlator. An expression for the error is analytically derived under the assumption that the 
counting time of incremental samples is much smaller than the light coherence time. Two 
examples are given: estimation of the spatial coherence length and estimation of the radius 
of a far incoherent object. 

1. Introduction 

Among the measurable quantities that describe an optical field, the intensity correlation 
function has been realized to contain valuable information about the light spectral 
shape as well as the dimensions and radiance distribution of its source (Hanbury Brown 
and Twiss 1956, 1957). With the development of photon counting techniques and digital 
correlation devices it has become possible to measure this function more accurately. 
The method of optical spectroscopy by digital autocorrelations has found an increasing 
number of applications and its theory is now well developed (Jakeman 1970). Moreover, 
the statistical accuracy in estimating parameters of the spectral linewidth has been 
calculated (Jakeman er a1 1971a). 

On the other hand, the use of photocorrelators for estimating spatial parameters of 
optical fields has not found the same recent attention (the effect of spatial correlation on 
the performance of photon correlators that estimate temporal parameters has been 
studied by Jakeman er a1 1971b and Degiorgio et a1 1971). We report here results of 
calculations of errors encountered in estimating parameters of the spatial coherence 
function of optical fields. The approach is similar to that of Jakeman er a1 (1971a) 
although in our case two detectors are used instead of one. The results are valid whenever 
the following assumptions apply. (i) The light field is gaussian, stationary and cross- 
spectrally pure (see eg Mandel and Wolf 1965). (ii) The counting time interval of each 
sample is much smaller than the field’s coherence time. (iii) The total counting time, or 
duration of the experiment, is much larger than the coherence time of the optical field. 

2. The optical field 

Assume a stationary and cross-spectrally pure optical field whose complex degree of 
coherence at points rl  and r2 is 

Yl2  = r12X(t l  - t2 ) .  (1) 

980 
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It is convenient to choose the normalization ~ ( 0 )  = 1, and to define the effective coherence 
length 

and the bandwidth W = tc- '. It will be also necessary to use the higher order normalized 
intensity correlation functions g12 . . .M(t l ,  t 2 ,  . . . , tM) .  With the usual assumption of a 
complex circular gaussian optical field, these functions can be expanded in terms of y 1  2 .  

The relations to be used in this work are 

g 1 2  = 1 +IY12l2 

g 1 2 3  = 1 YliY2jY3k 
i # j # k  
= 1,2 ,3  

g 1 2 3 4  = 1 YliY2jY3kY41. 
i # j # k # f  
= 1 ,2 ,3 ,4  

3. The photodetectors 

It is assumed that the optical field is detected using two point photodetectors at locations 
rl  and r 2 .  The effect of the finite area of the detectors is not considered here. Let n,(t) be 
the number of photons counted in a time interval T, centred around t by the detector 
located at rj .  We will be interested here in the statistical moments of njt ) .  Expressions 
of these moments are in general difficult (see eg Jakeman 1970), however with our 
assumption that zc >> T,, the statistical moments are related to the intensity correlation 
functions of the detected field by the simple equations 

where 6 is the Kronecker delta. Equations (4a, b, c) are valid only when r I  # r 2 .  If 
rl  = r2 additional terms appear. 

4. The digital correlator 

The available observation time T is divided into N equal intervals each of duration T,, 
and the number of counts in each interval is recorded. Let nJm) be the number of counts 
in the mth interval by detector j .  The digital correlator calculates the statistic 
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where 

and 

l N  
A, = - C nj(m) 

N m = l  
j =  1,2. 

This number can be used to estimate the normalized intensity correlation function 
g,,(O, z f ) ,  where z f  = (1+3)Td. In this work we aim at studying the use of the statistic 
8, ,(1) in estimating parameters of the spatial coherence of the field. For this purpose, it is 
necessary to study the statistical properties of g12(1). For simplicity in notations we 
write g, ,(1) and G, ,(1) simply as 2 and G, and also g ,  ,(O, z f )  as g. 

4.1. The mean 

By expanding Aj around its average value i i j ,  we can show that if l (Aj- i i j ) / i i j l  << 1, for 
j = 1,2, then to a first approximation 

By using the definitions (5b, c )  and substituting from (4a, b) and (3a, b) it can be shown 
that the bias term {E@) - g} is proportional to ( T W ) -  and thus is a very small number. 
It will be shown later that (var($))'12 isof the order of (TW)-'12. Hence the main source 
of error is the uncertainties expressed by the variance and not the error due to the bias. 
We conclude that, to the first approximation, 8 is an unbiased estimator of g. 

4.2. The variance 

By expanding A j  around iij and G around its average G we can show that 

(7) 
var (e) 

var(g)==+4g2+ 
n1n2 

In (7) we substitute e and A as given by (5b) and (5c) and thus write var (g) in terms of the 
various moments of n j m ) .  We further use (4a, b, c) to write var (g) in terms of the intensity 
correlation function and then use the gaussian expansion (3a, b, c )  to relate it to ~(z) and 
r12. Making use of the assumption that << zC,  the summations of (5b, c )  can be 
written approximately as integrals. Also the assumption that T >> T~ simplifies the form 
of these integrals. We finally find the following expression: 
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where f ic j  = fij(z,/TJ is the average number of counts in a coherence time t c ,  and 
+ m  

a(z) = W Ix(r)121x(r-z)/z dt J-, 
+ m  

u(z) = - 2 + 6 x Z ( t )  + 2W Re 

v(z) = a ( W  - 4x2(4 + 4x4W - 8x2(4 Re(x*(z)y(z)) + 2 Re(x(z)x(4y*(24) 

x*(t)x*(t)x(t + t)x(r - z) dr (9b) 

+ m  (94  
(94 

J- m 

= W 1- Ix(r) I2lx(r + z) l 2  dt. 

Equation (8) is thus a general expression for the variance of the statistic g as a function of 
the incident light's lineshape, degree of coherence and intensity level. A special but very 
important case is that when the light has a lorentzian spectrum, that is, 

x ( t )  = exp( - WIT] + iw,z). 

In this case, 

a(0) = 5 (loa) 
u ( t )  = - 2 + 8 exp( - 2x) - exp( - 4x) (lob) 

u(z) = - 4 exp( - 2x) - (t + 2x) exp( - 4x), (10c) 

where x = ItWI. 
We note that when only one detector is used, r12 = 1, the combination of (8) and 

(loa, b, c) reproduces the results previously published by Jakeman et a1 (1971a). Our 
result (8) is a more general expression in that it considers measurements by two detectors 
instead of one and in that it is correct for all lineshapes. However, it is a special case in 
that, we assume T,, << 7,.  

5. The estimation problem 

The magnitude of the spatial part of the degree of coherence lr121 is assumed to depend 
on a parameter 8. In this section we proceed to find an estimate for 0, say 8, given that the 
statistic f is observed. Since, for large TW, f is approximately an unbiased estimator of g 
with a small variance proportional to (TW)- ' ,  it seems reasonable, and simple, to 
choose 8 as the value of 0 that satisfies 

g = g(8). (11) 

In order to find the variance of 8, we expand g(8) around the correct unknown value 0, 
thus 

where 88 = 8- 0. This gives 
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This shows that 6’ is approximately an unbiased estimator of 8. It also shows that 

The estimation based on (1 1) is obviously not the best that can be done. If the probability 
distribution of g is available a maximum-likelihood estimator can be found. This is a 
problem we do not attempt. It is interesting to note that if g is gaussian (this is approxi- 
mately the case when TW is very large) then the Kramer-Rao lower bound on the 
variance of unbiased estimators of 8 takes, in the first approximation, the same value 
given by (12) (see eg Mood and Graybill 1963). 

Thus, with the combination of (8) and (12), we have found an expression for the 
accuracy in estimating any parameter of the intensity correlation function g(8). In the 
following section we give two examples of applications of the above results. 

6.  Examples 

6.1. Estimation of the spatial coherence length of a homogeneous optical j e l d ,  with 
lorentzian spectrum 

In this example r12 = exp( - Irl -r2I/rC),  and r c ,  the effective spatial coherence length, is 
to be estimated. By simple substitution of r12 in (8) and use of (loa, b, c), (12) yields an 
expression for the required estimation error. We have found numerically that the choice 
of T = 0 gives the least error. In this case 

e;= = var1/2(rc)/rc 

where 5 = ( r ,  - r2J/rc.  This error is plotted (figure 1) for several values of f i  and fi,. It is 
interesting to see that the error reaches a minimum when Ir, -r21 ‘v i r , .  

6.2. Estimation of the radius of an incoherent circular object b y  measurements at an 
aperture far from the object plane 

We assume an incoherent circular object of radius b and radiance function B(u) at a 
point U of the object plane. We also assume the radiated light to have a lorentzian 
spectrum. Light radiated from this object propagates deterministically, and produces 
under conditions of paraxial rays an aperture field with coherence (see eg Mandel and 
Wolf 1965) 

r12 = 2Jl(Y)/Y, 

where y = 2nblrl --r2\/AR, where R is the distance between the object and aperture 
planes, 1 is the light wavelength and J,  is the Bessel function of order one. Again by 
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Figure 1. The error in estimating the spatial coherence length rc as a function of the norm- 
alized distance between the photodetectors ( = J r l  - r z l / r c ,  for several values of the average 
counting rates ii and iic = i i (~&) .  A. ii = 0.01, ii, = 0.1; B. ii = 0.1. ii, = 1.0; C, ii = 1.0. 
ii, = 10; D, ii = tu, ii, = 30. 

Y 
Figure 2. The error in estimating the radius of an incoherent object b as a function of y = 
Zsblr, - r,//A'R for several counting rates ii and ii,: A, ii = 0.01, A, = 0.1 ; B, R = 0.1, E, = 1.0; 
C, ii = tu, ii, = m. Also shown a plot of the degree of coherence lr,21 against y. 
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substituting in (8), (10) and 

eg = var'l2(b)/b 

12) with t = 0, we get 

2 2J,(Y) 2J,(y) -' ' I '  1 +r{[ n c  T) - 2  + 2 -  (y) '} +&{ 1 + [ --) }] 4J,o' 

The variation of the above error with y is plotted in figure 2 which shows the values of y 
(ie the separations ( r l  - r z l )  at which the error is minimum. 
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